- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
If angle between asymptotes of hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{3} = 4$ is $\frac{\pi }{3}$, then its conjugate hyperbola is
A
$\frac{{{y^2}}}{{19}} - \frac{{{x^2}}}{9} = 1$
B
$\frac{{{y^2}}}{{12}} - \frac{{{x^2}}}{{25}} = 1$
C
$\frac{{{y^2}}}{{12}} - \frac{{{x^2}}}{{36}} = 1$
D
$\frac{{{y^2}}}{{12}} - \frac{{{x^2}}}{{4}} = 1$
Solution
$2 \tan ^{-1} \frac{b}{a}=\frac{\pi}{3},$ where $b=2 \sqrt{3}$
$\Rightarrow \quad \frac{b}{a}=\frac{1}{\sqrt{3}}$
$\Rightarrow \quad \alpha=6$
conjugate hyperbola is $\frac{x^{2}}{36}-\frac{y^{2}}{12}=-1$
Standard 11
Mathematics